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Spin-Spin Correlation Function in the 
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I. T < T c  

L e e - F e n  Ko ~ 

Received November 17, 1987; revision received April 20, 1988 

The dispersion expansion for the spin correlation function in the two-dimen- 
sional Ising model with linear defects below Tc is derived. The asymptotic 
behavior is computed by a steepest descent analysis. The lattice is divided into 
four domains with different asymptotic behaviors. In particular, the correlation 
length inside certain domains is a function of the defect. 
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1. INTRODUCTION 

The simplest way to modify a homogeneous two-dimensional Ising model, 
i.e., one with all horizontal and all vertical interactions equal to E1 and E2, 
to include a row of defect is either to modify a row of horizontal bonds to 
E'I or change a row of vertical bonds to E~. We call the former a line-defect 
model and the latter a ladder-defect model. Both models contain a 
marginal operator, ~1'2) because the scaling dimension of the perturbation 
equals the scaling dimension of the energy-density operator. 

Fisher and Ferdinand ~3) first studied the incremental critical specific 
heat for the linear defect models. Bariev ~2) computed the local 
magnetizations for both models. He obtained the defect-dependent critical 
exponent fl for local magnetization near the defect, 

/3 = (arccos r)2/(2rc 2) (1.1) 

l tanh 2(H'c - He), line defect model 

z = (cosh 2V'c.- cosh 2Vc)(cosh 2V~ cosh 2V2) 1, (1.2) 

ladder defect model 
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where Hc =E1/kTc, etc. McCoy and Perk (4~ calculated the two-spin 
correlation function along the defect row for the line-defect model. They 
found the critical exponent q=2/?, where /~ is the same as in (1.1). The 
energy-density correlations for the line-defect model have been computed 
by Ko et al. ~5) in the scaling limit; they found that the behavior at the 
critical point is similar to the electrostatic problem of two point charges 
near a boundary separating two media with different dielectric constants. 

That ~ depends on E~ for the ladder-defect model is not unexpected, 
since when E; = 0 and E; = E2,  the ladder-defect model reduces to the 
semi-infinite free boundary system and to the infinite system, respectively, 
and the local critical exponents of these two systems are known to be dif- 
ferent. In fact, the ladder-defect model is particularly interesting for being 
the simplest generalization that includes the infinite and the semi-infinite 
models. Many exact results are known about these two systems. For the 
infinite system, there has been a development that relates correlation 
functions to Painlev6 functions(6); while the semi-infinite system, with 
suitable boundary conditions, has led to an important understanding of 
many surface properties. (7) In addition, both infinite and semi-infinite 
models have been successfully treated at criticality by conformal algebra 
methods. (8) One naturally asks, what happens in between? 

The line-defect and the ladder-defect models are intimately related. A 
duality transformation (9) that transforms the horizontal bonds to the ver- 
tical bonds, the order variables to the disorder variables, and vice versa 
takes one model to the other. But except for the less involved objects, such 
as energy-density correlations, the duality transformation does not provide 
information for order variables in one model from that in the other. 
Looking from a different angle, we may also say that knowledge about 
the behavior of order variables in both models enables one to gain more 
understanding for either model. Hence we propose to study in this paper a 
model that includes both the line-defect and the ladder-defect models as 
special cases. In particular we study the two-point spin correlations at 
arbitrary locations. 

The Hamiltonian for this model is 

E 
kT = ~ (El~Tm, nCrm, n+l + E2ffm, nffm+l,n) 

m , n  

+ ~  (E'I-E1) ~ ~,~,n~,,,,n+l +(Ei-E2)cr-1/2,n~m.~ 
n m = - -  1 / 2  

(1.3) 

where the summations are over n e Z, m ~ Z + �89 The boundary conditions 
are periodic, hence we do not consider the mixed-phase case. (1~ This model 
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reduces to the line-defect model with a row of modified horizontal interac- 
tions 2E'I as E ;  -+ oe; when E~ = El ,  it becomes the ladder-defect model. 
In the latter limit, we also have the half-plane case when E ;  --0, and the 
pure case when E ;  = E 2. Figure 1 shows a portion of the lattice. Spin ~ . . . .  
which takes + 1, sits on site (m, n), as indicated in the figure. We let m take 
half-integer values for simplicity of presentation. 

We consider the case for T <  Tc in this paper and give the T >  Tc case 
in a subsequent paper. 

In ref. 5, the scaling function of energy-density correlation for the line- 
defect model was expressed in a quadratic form of functions related to the 
Bessel functions. But it is known that spin correlation functions for Ising 
models have infinite dispersions, and we compute the dispersion expansions 
for the linear-defect model. The expansion below Tc is given in Eq. (3.5); in 
Eq. (4.8) we show the scaling form. Comparing to the pure case, we see 
that the expansion for the defect model has a discontinuity in functional 
form as one spin crosses the defect rows. The nature of this discontinuity 
can better be seen when it is expressed as a Fredholm determinant: When 
both spins are on the same side, it is the determinant of a system of four 
integral equations; but if one spin crosses the defect, the number is reduced 
from four to two. The special cases of the pure system and the half-plane 
system (2) can be expressed as the Fredholm determinant of a single 
equation. The relation with Fredholm equations will be given in a separate 
paper. 

Fig. 1. 
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In the pure system, two-point correlation functions can be specified by 
the separation between the two points alone, because of translational 
invariance. In the scaling limit, the angle dependence is further lost and 
rotational invariance becomes valid. For  the defect model, clearly one no 
longer has full translational symmetry; nor does one obtain rotational 
symmetry in the scaling limit. In general, three coordinates are required, 
the horizontal and vertical distances between the spins, x and y, and the 
distance Of one spin from the defect row, Yl. It is often convenient to use 
the separation r and the image separation ?. The image separation is the 
distance between one spin and the mirror image, with respect to the defect 
rows, of the other. This distance appears naturally already in the energy- 
density correlation in ref. 5, and apparently is closely related to the 
similarity with electrostatics. 

We found that in the scaling limit, the two defects E'I and E~ appear 
only in the combination 

t ,  = s g n ( T -  To) tanh[2(2E '~-  Ea - E 2  )/kTc] (1.4) 

This function is shown in Fig. 2. 
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Fig. 2. Contours of sgn(T- Tc)~ in the defect-coupling space. The couplings are in units of 
kT c and the bulk couplings are taken to be isotropic, El = E2 ~ 0.44. ( � 9  The pure infinite 
system; the line E~ = 0 gives the semi-infinite systems; ((3) the point about which the function 
is antisymmetric. 
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We calculate the asymptotic behavior in the scaling limit as the two 
spins are far from one another and from the defects. These are given in Eqs. 
(5.5)-(5.10). The two cases for the spins on the same side and for spins on 
opposite sides of the defects are distinct. The latter case is much simpler; in 
fact, translational invariance is restored asymptotically. It is found that if 
r > 0, the correlation length become defect dependent in some regions. Fix 
one spin; then the domain for the locations of the second spin where a 
defect-dependent correlation length can be found is shown in the shaded 
portion of Fig. 3. In addition, in this region the power law changes to r-1/2 
from the usual r 2, i.e., it becomes Ornstein-Zernike like. In the other 
regimes the effect of the defect is mainly a multiplicative factor depending 
on the defect and geometry. Figure4 shows the most dominant con- 
tribution in the defect-inclination space for the case where the spins are on 
opposite sides. 

YI' 0 ) 

\ 

J 

Fig~ 3. If z > 0 and the second spin ay2, x is located in the shaded region or in its reflection, 
the correlation length is defect dependent. The wavy line represent the defects; the angle ~ = 
arcsin z; and the curved line is part of a parabola. 
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Fig. 4. Contours of the asymptotic two-point spin correlation for T--, T~- as a function of 
defect �9 and inclination, sin 0 = y/r. The values given are obtained after normalizing by the 
bulk correlation below the broken line and by e x p ( - r - y ~ -  x~)/(2nr) m above. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

There exists different methods (1~) for computing correlation functions 
in the Ising model. Here the method of Onsager and Kaufman using 
Clifford operators is adopted. We concentrate on the spin-spin correlation 
function, which can be expressed as a Toeplitz determinant, 

{Ao + A l l  A12 
(al'Offm'n) =detl/2 \ A21 Ao + A2z) (2.1) 

where the submatrices are of infinite size and will be defined shortly. The 
relation with Clifford operators is given in Appendix B of a companion 
paper. The b lock structure ~6) of (2.1) is a result of our considering spins at 
arbitrary rows, and will not appear  if we consider the special case l =  m .  (4). 

The diagonal blocks have a pure part  A 0 and a defect part, All or A22, 
which vanishes in the homogeneous model. Separating the pure part  from 
the diagonal blocks has the advantage that the determinant can be expan- 
ded using known results for Ao, namely, the determinant and the inverse of 
Ao. 
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All the submatrices on the right-hand side of Eq. (2.1) are Toeplitz 
with 2 x 2 matrices as their entries. The matrix A0, which determines the 
magnetization in the homogeneous model, is 

1 = C~b)) (2.2) d~e ~(k-j)~( 0 
_ - C ( ~ )  -1 

where k, j =  0, 1, 2 .... and C(~b) is given in Appendix A. 
The function C(~b) can be factored: C(~b)= C+(~b) C_(~b), with C+(r  

analytic and nonzero in le i~] X 1. This is a canonical factorization valid if 
In C(~b) is continuous and periodic [C(~b) has index ze ro ] - -a  condition 
satisfied for T <  Tc but not for T >  To. Technically this is why the T <  T~ 
and T >  Tc cases are entirely different. It is known that when the index is 
zero, Szeg6's theorem and the Wiener-Hopf  method can be applied to 
give ( 6 ,  11  ) 

d e t A o = M  2 (2.3) 

and a+(~) a-(O) 
(A ~ 1 )ej e*{eo- jo) = (2.4) 

i - -  e i(r - o + ig) 
k , j~O  

where e--+0 +, M is the spontaneous magnetization for the pure system, 
and 

a+(~b)= C+(~b) ' , a-(~b)= C ~b) (2.5) 

The other submatrices besides Ao in (2.1) have the general form 

2 

(Mpq)kJ = 2 (ASpq)kj ' (2.6a) 

with 

(ASpq)kj = ~  _ dee -i(e J)r X*pq(~) b p q ( ~ )  (2.6b) 

where p, q = 1, 2 and k, j = 0, t, 2 ..... The functions X~q(fb) may contain the 
defect strength x. [Both X~q(r and ~c are given in Appendix A.] The 2 x 2 
matrix b~q((~) has the simple factored form 

C_ +1)) b;q = ( _  1)p, ( _ i C  ((-1)qs(ic-1),C+) (2.7) 
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A closer look at the functions X;q(~)) in (A.4) shows that not all com- 
binations of (p, q, s) in Eq. (2.6) are relevant, because it is zero for s = 2, 
which means s is redundant, if the spins are on opposite sides of the defects 
( l<  0 < m ) .  It is possible to eliminate the superscript for the other case 
( 0 < l < m )  also by introducing a more involved bpq(O); this is shown in 
ref. 5, and will not be presented here. 

3. D I S P E R S I O N  E X P A N S I O N  

As noted above, we want to compute the determinant in Eq. (2.1) by 
expanding around A0. Using a well-known identity ~lz) for determinant and 
trace, it is easy to show from (2.1) that 

(al, o~r,.,~) = det(A0) exP[�89 Tr ln(1 + R)]  

= M 2 e x p ( -  ~ ( - - 1 ) k T r R k )  (3.1) 
k= 1 2k 

where 

[A~ A~ (3.2) 
R=~AolA2a AolA2z.] 

The first step in the evaluation of the trace over R k is to write out the 
following: 

k 
Tr R k = ~ Z tr 1-I E(Ao!).2j_~,.2j_, t(z4Sjpjpj+l,'n2j-l, n2ja~ ] (3.3) 

{pj.sj} {ni} .i=l 

where the summations are over p j =  1, 2, s j =  1, 2, j =  1 ..... k, with 
P~+I = P l ,  and over n ; = 0  ..... 0% i =  1 ..... 2k, with no =n2k. The tr denotes 
the trace operation over the remaining 2 • 2 matrices. 

Substituting (2.6) in (3.3), we find combinations of terms in the form 
of the left-hand side of Eq. (2.4); using it, we find that Eq. (3.3) simplifies. 
This leads to an expression containing the product 

k 
tr I~ [a-(~bj) b~/ipj+l(fbj) a+(~bj)] (3.4) 

j= l  

The above can be evaluated explicitly from Eqs. (2.5) and (2.7). Because bSpq 
has the factored form in (2.7), the algebra is tremendously simplified. 
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After some algebra and substitution, we find the dispersion expansion 
to be 

v ~ 1 / 1\  k 
(a t ,0o .m,n)=M2ex p __ }-, __ --1 

{ Pj,$j } 

x dr dCkK;'ts~2(~),, r 
- - l t  - - ~  

(3.5a) 
A 

with 

gSptq(O,O)=l_ei(~_o+ie) 1 - ( - 1 )  p(s+ C~(qi) (0) (3.5b) 

Equation (3.5) has the form of a Fredholm determinant of a system of 
integral equations; this will be discussed elsewhere. Since X;q decays 
exponentially with the distances [see (A.4)], the importance of each term 
in (3.5a) decreases with increasing k in general. However, at the critical 
temperature the exponent in X;q vanishes and the expansion diverges. 

4. C O N T I N U U M  L I M I T  

It is well known that in the homogeneous model there is a transition 
from an order to a disorder phase. This occurs at a critical temperature T~ 
given by 

(2e,  
sinh \ k T J  slnh t ~ - ~  ) = 1 (4.1) 

The defect model has a phase transition occurring at the same T C given 
above. We can see this from a transfer-matrix argument as follows. Let T 
be the row-to-row transfer matrix for the homogeneous model and let T'  be 
the transfer matrix of the defect row. The partition functions for the 
homogeneous and the defect systems Zh and Za can be expressed in terms 
of the transfer matrices as 

Zh = Tr T N (4.2) 

Za = Tr T' T N- 1 (4.3) 

where N is the total number of rows. Let {2~} and {[e)  be the set of 
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eigenvalues and eigenfunctions for T. In terms of them Eqs. (4.2) and (4.3) 
become 

/]'1 N /~2 N ] <4.4, 

z .  = <01T' 10>;~o ~-1  1 + <01T' 10> \Too/ + --. (4.5) 

where 2o is the largest eigenvalue of T. 
In the thermodynamic limit, N ~  oo, every term other than the first 

vanishes in (4.4). The same is true with (4.5) as long as (01T'  10) does not 
vanish. Hence the critical temperatures for both systems are determined by 
the singularity of 2o. 

In the next section, we shall restrict to the continuum, or scaling, limit. 
Let T-~ T~; the correlation length ~ diverges in this limit; consider large 
distance R --* o% keeping the scaled distance r ~ R/~ fixed. More precisely, 
for Eq. (3.5), we scale the parameters as follows: 

n t l l  m m - - I  m + l  w 
x = ~ ,  yl=-~-],  y 2 = ~ ,  y=---~-- ,  ) 9 = - - ~ ,  ~ = ~  (4.6) 

where ~h and ~v are the horizontal and vertical correlation lengths, respec- 
tively. They diverge linearly as T--+ To, 

~ - l  = 2[ Vc + Hc/s inh(ZHc)]  [T/Tc - 1[ 

~2- i = sinh(2H~) 4; -1 (4.7) 

Hc = E~/kT~,  V~ = E2 /kTc  

With the above scaling, it is straightforward to show that Eq. (4.5) 
becomes 

lim(at, oa, . . . )  = M t M m  exp - 
k = 2  {pJ, C 

/ / x dWl ""  dwkL"~2(wl ,  w2) 

:k:, w, ) ]  (4.8) x L "2s3 (w2, W3)"'" Lpkp,(wk, 
P2P3 

with 

LS,~  . Y'p,,(P) ( l + w 2 ) l / 2 - ( - 1 ) P ( s + e ) ( l + p 2 )  ~/z 
pq~W, p)  = (1 + w2) a/2 w - p + ie 
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where Mt = (at, o> is the local spontaneous magnetization at the lth row 
for the defect model, and the summations are over pj = 1, 2, s s = 1, 2, j = 
1, 2 ..... k, except that p~ = P2 . . . . .  p~ is excluded. The kernal L;q is the 
scaling limit of K;q in (3.5b) up to some factors of i~h. The function Y~q can 
be obtained from Xpq by scaling as in (4.6) and taking the limit ~ ~ oe. 
This function is explicitly given in Appendix A. The convergence problem is 
not considered here; for that of the homogeneous system, see ref. 13. 

The terms excluded from the exponential in (4.8), i.e., terms with all pj 
equal, are those that do not vanish as m - l ~  or. They come from the 
diagonal blocks of Eq. (2.1), and give exactly M z M m / M  2. Writing the 
expansion in the above form is more suitable for studying the asymptotic 
behavior, which is the subject of the next section. 

5. A S Y M P T O T I C  D E C A Y  

For operators with nonvanishing expectation values, we may consider 
the net correlation functions. The spin operator in the low-temperature 
phase is in this category. Let 

= lim((~rl, oam, n > - (at, o>(f fm, .>)(MtMm) -1 (5.1) 

The asymptotic decay for Eq. (4.8) can be computed from the first few 
terms in the infinite series on the right-hand side, because the kernel 
Lptq(m, p) contains the function Y;q(p), which decays exponentially for large 
scaled distances. The leading behavior of these terms can be calculated by 
the method of steepest descent. The details of the calculation are given in 
Appendix B. Here we only present the final results. 

The asymptotic decay for the homogeneous Ising model is (m 

( (~0" 0 (~a r > = e - 2r/8~r2 (5.2) 

The above is not of the Ornstein-Zernike form, e-Fir 1/2, due to the unique 
property of the low-temperature phase of the two-dimensional Ising model: 
the eigenstates of the transfer matrix are all even-particle states. Hence (14) 
the leading contribution cannot come from one-particle states to produce 
an OZ-type behavior. 

For the defect model, the results are much more complicated in two 
respects: One is the very different behaviors for the two domains l < 0 < m 
and 0 < l < m; the other is the appearance of a defect-dependent correlation 
length, which is contained in the terms preceded by a step function below. 
The former feature is apparant from the beginning of our derivation 
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through the definition of the function XSpq; the latter feature is found only 
as we study the asymptotic behavior of the correlation function. 

Let r be the defect strength in the scaling limit, 

z = sgn(T-  To) tanh[2(2E~ - E~ - E~*)/kTc] (5.3) 

where the asterisk denotes the dual, 

2E~ 2Es 
sinh ~ sinh ~ = 1 (5.4) 

Since the defect model reduces to the homogeneous model for r = i3, we 
write 

((~O'yl,O (~O'y2, x ) z  ~- f ,(r,  ?, y ) ( f t r  o f iG)  + eg,(r, ?, y) (5.5) 

It is clear that f0(""  )=  1. In general, the deviations f~ and g, are the 
following: 

(1) For yl  ~ O ~  y2, 

f~(r,?, y ) = ~ 2 (  Y------~-~ 2 (5.6) 
\ re  - y /  

g~(r,f, y ) = O ( e _  y )  ' Y  
r e -  y 

( r~ -- x ~ 2 exp( -- r - ye - x~ ) 
x \re  + y /  (2nr) m (5.7) 

(2) For 0 ~ y~ ,~ Y2, 

f~(r, ~, y ) =  1 

x ~-- r e (-r-e) 
g~(r, f, y) = -- re-- y ~ + r 27z(rf) u2 

x )2 exp( -- 2?) 
z ~ 8nf2 

ry e x p ( - 2 r -  2_yl) ] 
+ ( l - e )  -I (r+ y)2 (4~yl)3/2r 2 J 

- - O ( z - - ~ )  F r ~ - x e x p ( - r -  -(2~rr) "rf2 

_zx ( ~ - x ~ 2 e x p ( - - f - -  y z - - x ~ ! l  

(5.8) 

(5.9) 
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where O(x) is the Heaviside step function, and 

r 2 = x 2 + y  2, ?2=x2+372, & =  l - z 2  (5.10) 

The rather complicated expression in (5.9) is a clear indication that the 
breaking of rotational and translational invariance by the defect persists to 
the scaling regime. By comparison, the l,~ 0 ,~ m case is surprisingly simple; 
in particular, the translational invariance is restored in this asymptotic 
order.. 

Several observations can be made about the above results. First, if the 
term in g~ containing the step function dominates, the correlation length is 
greater than in the bulk, and it depends on the defect as well as on the 
geometry. We restrict the following discussion to the most dominant con- 
tribution, and consider only the first term with a step function for (5.9). 

The regimes where g~ dominates are determined by the following 
conditions: For spins on opposite sides of the defects, it is necessary that 
r > y/r and yz + x f <  r; for spins on the same side, the conditions are 
r > )7/f and 37r + x f  < r. In the former case, the first condition implies the 
second. So, if we fix ayl,O, then the domain in which cry2, x can be located 
while satisfying the above condition is a wedge between the defect rows and 
the straight line 

Yz + ~ z - l x = Y l  (5.11) 

In the latter case, however, the condition ~> 37/f does not imply 
37r + x~? < r, and they have to be solved simultaneously. The solution gives a 
domain confined between the line of defects and the parabola 

(rx--  fY2 + fYl) 2 = 4ryl(~x + zY2) (5.12) 

The shaded region in Fig. 3 shows half of these domains; the other half is 
its reflection with respect to the y axis. In the figure the angle ~b = arcsin z. 

The defect strength affects the correlations also in the form of prefac- 
tors that are orientation dependent as well. In Fig. 4, this is shown for the 
case where the spins are on opposite sides in the low-temperature regime. 
The abscissa is sin 0 = y/r and the ordinate is ~. The broken line separates 
the two regimes where g~ dominates (above) and where the term with f~ 
dominates (below). The values given for each curve is the dominant term in 
the net spin correlation normalized by the bulk correlation below the 
broken line, and by the factor e x p ( - r -  y ~ -  xf)/(2nr) 1/2 above the broken 
line. The normalizer used in the latter case is an Ornstein-Zernike-type 
behavior modified by a special type of exponential decay peculiar to linear 
defect systems. 
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A P P E N D I X  A. 

where 

where 

S O M E  D E F I N I T I O N S  

This Appendix  gives the functions appear ing  in the text. 
The  integrand in the matr ix  Ao in (2.2): 

C(r  = C( - r  = C*(r  -~ 

= [(1 -- cq eir -- c%e-ir  1/2 

x [ ( 1 -  e 2 e i r  ~ l e - i ~ ) ]  - m  

cq = zl(1 - z2)/(1 + z2) < 1 

0 : 2 = z ~ l ( 1 - z ? ) / ( t + z 2 ) ~ l  for T><Tc 

zj = tanh(EJk  T) 

The  canonical  factor izat ion of C(~b): 

C+ (~b) = C_  ( - ~b) - l  = (1 - c~leiO) 1/2 (1 - c~2e iO) -1/2 

The functions X~e in the definition of Apq in (2.6): 

1. Fo r  spins on different sides of the defect, l < 0 < m, 

U e x p [ - ( 2 m p - 1 ) F ] ,  { s = l , p = q  

Xpq= W e x p [ - ( m - l - 1 ) F + i ( p - q ) n O ] ,  s = l , p : ~ q  

0 s = 2  

2. Fo r  spins on the same side of  the defect, 0 < l <  m, 

U e x p [ - ( 2 m p -  1)E l ,  s =  1, p = q  

exp[- - (m - I ) F  + i(p - q) nO], s = 1, p 4= q 
Pq 0 s = 2 ,  p = q 

U e x p [ - ( m + l - l ) F + i ( p - q ) n r  s = 2 ,  p # q  

Ko 

(A.1) 

(A,2) 

(A.3) 

(A.4a) 

(A.4b) 

W(~b) = W(-~b)  = (1 -[~cl2)(~c + C ) - '  (~c* + C*) -1 (A.5) 

U(~b)= - U ( - ( ~ ) = ( x C * - ~ c * C ) ( ~ c + C )  -~ (~c*+C*)  ~ (A.6) 

F(~b) = F( - ~b) = arsinh{(1 - z22)[2z2(t - z~)] - '  
II  

• [(1 -- ~leio)(1 - - c~ l e  -ir 

x (1 - c~- lei*)(1 - el e - i r  1/2 } (A.7) 
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The defect strength ~c: 

~c = t a n h ( p ) d  ~ 

cosh(2p) = cl c2 - si s2 cos(~b) (A.8) 

s inh(2p)e  ir = sl c2 - ci s2 cos(~b) + is2 sin(~b) 

c~ = cosh[2(2E'~ - E~) / kT] ,  c2 = cosh(2E~*/kT)  

and s~ and s2 are the corresponding hyperbolic sine functions. 
In the scaling limit, 

~2 -~ l + s g n ( T -  T c ) ~  1 

t ,  --* K,. = tanhl~(2E'l - E~ - E 2 ) /kTc] (A.9) 

Define 

r = s g n ( T -  T~) tanh[2(2E'l  - E 1 - -  E~*)/kTc]  (A.10) 

and scale the variable ~b by ~.h. Then, as T ~  Tc, 

w ( ~  ) ~ W<(w)  = ( 1 -  ,2)1/2 (1 + w2) ~/2 [ (1 + w2) ~j~ - ~ ] 

U ( ( J ) ~ U c ( w ) =  - i r s g n ( T - T c )  w [ ( l + w 2 ) l / 2 - r ]  - I  (A.11) 

r(~)  ~ r<(w)/~ = (1 + w2)~i~/~ 

The function Ypq in (4.8)is the scaling limit of XSpq, Xpq(~)-~ Ypq(W): 

1. For spins on different sides of the defect, l < 0 < m, 

U c e x p ( - 2 y p F ~ ) ,  ( s =  1, p = q  

I 'pq= W ,  e x p [ - y F ~ + i ( p - q )  xw] , ,  t s = l , p # q  (A.12a) 

0 s = 2  

2. For  spins on the same side of the defect, O < l <  m, 

Uc exp(-2ypF<.) ,  s = 1, p = q 

ys = exp[  - y F  c + i(p - q) xw] ,  s = 1, p # q (A.12b) 
Pq 0 s = 2 ,  p = q  

U c e x p [ - - y F c + i ( p - - q ) x w ] ,  s = 2 ,  p # q  

A P P E N D I X  B. A S Y M P T O T I C  A N A L Y S I S  

In this Appendix, we calculate the leading orders of the spin-spin 
correlation function. 
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For large separations, Eq. (4.8) is approximated by the first few terms 
of the series, 

tpj,,j~ ~ _ dwt dw2 

SlS2 x Lplm(wl, w2) L~,t(w2, wl) 

l ( - i ) 3 f f f 2  +-~ ~ dwl dw2 dw3L;':~,~(wl, w2) 

x L~73(w2, w3) Lp3?~l(W3, Wl) ] 

LSpq (w,p)= rtpq(p) (l +w2)1/2 (_l)p(~+t)(l +p2)1/2 
(1 + w2)  1/2 (D - -  p + i~ 

(B.la) 

(B.lb) 

For l < 0 < m, the expression is simpler: 

(6a,,o6a~,~) 1 1 f f 2  ,~ I=~ 41t-- 5 _ dwl dw2 

11 1i x L12(wl, w2) wl) L21(w2, (B.2) 

Substitute for the integrand from (B.lb), (A.12a), and (A.I1), and let 
wl --> - w l ;  we have 

1 - -  T 2 :':'~ I = ~ J J _  dw, dw2 ~ (exp(---~'k--ixwk))(W1--W2)2 
k=l \ wk - z  , (w'lTw'2) 2 

(B.3) 

where w '=  (1 + w2) 1/2. (This notation is used throughout Appendix B.) 
As r = (x 2 + y2)1/2 ~ ~,  the integral is dominated by the contribution 

near the saddle point, 

w, = - i x / rE  - / c o s  0 (B.4) 

We deform the contours of integration form the real axis so that they pass 
through the saddle point on the negative imaginary axis. Because the 
denominator in the integrand can vanish, there is a contribution from the 
pole at 

Wp = - i( 1 - z 2) 1/2 (B.5) 

if ws lies below Wp on the imaginary axis, i.e., if z > y/r. 
Naively, the integral will consist of three terms: one from wl ~ w~ and 

w2~w ~ (denote this term as /~), one from wl(w2),.~ws and w2(wl).,.Wp 
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(denote as Ip), and one from wl ~ Wp and w2 ~ Wp. However, the last term 
vanishes because the residues is zero. So we write 

I =  Is + O('c -- y/r) lp (B.6) 

The pure saddle-point contribution can be expressed as 

I~ = ~ _ dw 1 dw 2 

X ~ (exp[-r-rA2(2sin20)-l]) 2A2 (B.7) 
, =1 \ sin -0 -C-- 7 (2 sin 0)2 

where Ak = wk -- w,. 
Equation (B.7) is  obtained by expanding the integrand of (B.3) in 

powers of A1 and A 2, retaining the lowest order term. It is easy to evaluate 
the Gaussian integrals above, and we find 

y )2  e-2r 
Is = (I - "c 2) r-7]77_ y 8r~r 2 (B.8) 

The mixed saddle-point-pole contribution is 

1 - -  "C 2 exp( - yz -- xg) 
Ip = 2 ( - 2 = i )  8~ 2 Wp(1 +W2p) - m  

x f ~~ dw2(exp[--r--rLl2(2sin20)-l]) (wp--Ws) 2 
_ ~ sin 0 - r (z + ~ n  

y ( r g - - x ) 2 e x p ( - r - y z - x g )  
rz--  y \r-7-'r-~y} - ~ r )  -iT2 (B.9) 

Substituting the above in (B.6) and (B.2) yields the formulas (5.6) and 
(5.7). 

The situation for the case where the two spins are on the same side 
( 0 < / < m )  is less clear. Which term in (B.1) dominates asymptotically 
depends very much on the relative magnitudes of x, y~, and Y2. Therefore 
we will treat the double integrals and one term from the triple integrals as 
equally important in the following analysis. 

There are four integrals to be evaluated asymptotically for the case 
where the two spins are on the same side: 
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(c~al, o6tYm, n>~Jo + J1 + J2 -f-J3 

lff  L~2(wl, w~) L21(w2, wl) Jo =--~ dwl dw2 11 11 
--oo 

e l f  2 L22(w1, w2) L21(w2, w1) J 1  ~ ~ _ d w  1 d w  2 1 2  , 2 1  

1 
f f 2  dw2L12(wl' ) w2) L21(w2, wl J2--'ff-~2 _ dWl 22 22 

i f f f 2  L12(w3, w2) J3 - ~ 3  _ dwl dw2 dw3 H 

x L~l(w~, wl) Lll(wl, w~) 

(B.IO) 

Substituting the Lp~q from (B.1), (A.12b), and (A.11) and changing w~ 
to - W l ,  we find for the above integrals 

Jo = 7~21ff~ dwl dw2 f l  exp ( -yw 'k - i xwk) (w l -w2)2  
- c o  k=l Wtk (Wtl '~ W~) 2 

iT 
Jl =---~g2 ff~_oo dwl dW2 

exp(--yw i - ixw j ) exp ( - f iw '2 -  ixw 2 ) W 1 - -  W 2 

W 1 W 2 ( W  2 - - T )  W 2  t t t W 1 --F W 2 - -  i~ 

J2 =~-'c2 f f  c~ dw~ dw 2 [] wkexp(--YW'~--ixwk) (Wl , 
-~  , ,=1 wk(w,,--~) (wl +wl) 2 

(B.11) 

J3 = ~3  dw1 dw2 dw3 
-- oo 

w3 e x p ( - 2 y l  w~) 

w;(w; -T )  

2( , x I-I exp( - -YWk- txwk! ) (w3+w2) (w2-w ' ) (w3-wl )  
k=, w'k J (w'l +w'~)(wi-~w;)(w'3 +w',) 

The dominant contributions for the integrals (B.11) are computed in 
the same way as in (B.3): Jo is dominated by the contribution from the 
saddle point w, of (B.4); J1 has two terms, one from Wl ~ ws and w2 ~ #~, 
and one from wi ,-~ w, and w2 "-, Wp; ,12 also has two terms coming from 
wl ~ #s and w2 "-, Ws, and from Wl(W2) ~ #,  and Wz(Wl) ,-, wp; and J3 comes 
mainly from Wl ~Ws, w2 "~Ws, and w 3 ~0 .  The image saddle point #s is 
similar to w,, 

#s = -- ix/? (B. 12) 
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P r o c e e d i n g  as wi th  Is a n d  Ip before ,  we f ind 

Jo ~ e x p ( - 2 r )  
8~r  2 

r x  ? - - r e x p ( - r - - ? )  ( ~ ) r f - x e x p ( - r - p z - x f )  
J l ~  ? r - - J T f +  r 27r(rf)U 2 0 r -  Z r ~ + x  (27zr)1/2 

( x ) 2 e x p ( - 2 ? )  ( y _ - ~  r2x  ( ? f - - x ] 2 e x p ( - f - y r - x , )  
J 2 ~ , ~  "2 ~-O r 

8rff 2 ? / ? ~  - )7 \ ? ~  + y /  (27r?) '/2 

"c ry e x p ( - - 2 r - -  2 y l )  
J3 ~ l _ r ( r + y ) 2  (47cy1)3/2r 2 (B.13) 

T h e  a b o v e  give (5.8) a n d  (5.9). 
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